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Encoding Strategy For Maximum Noise

Tolerance Bidirectional Associative Memory

Dan Shen and Jose B. Cruz, Jr.,Life Fellow, IEEE

Abstract

In this paper, the Basic Bidirectional Associative Memory (BAM) is extended by choosing weights

in the correlation matrix, for a given set of training pairs, which result in a maximum noise tolerance set

for BAM. This optimized BAM will recall the correct training pair if an input pair is within the maximum

noise tolerance set. We define a hyper-radius, and we prove that for a given set of training pairs, the

maximum noise tolerance set is the largest, in the sense that at least one pair outside the maximum

noise tolerance set, and within a Hamming distance one larger than the hyper-radius associated with

the maximum noise tolerance set, will not converge to the correct training pair. A standard Genetic

Algorithm (GA) is used to calculate the weights to maximize the objective function which generates a

maximum tolerance set for BAM. Computer simulations are presented to illustrate the error correction

and fault tolerance properties of the optimized BAM.

Index Terms

BAM, Energy Well Hyper-Radius, GA, Tolerance Set, Training Set
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I. I NTRODUCTION

In 1968, Anderson [6] proposed a memory structure named Linear Associative Memory

(LAM), which can be used in hetero-associative pattern recognition. Since LAM is noise sensi-

tive, Optimal Linear Associative Memory was introduced by Wee [7] and Kohonen [8], which

extended the LAM by absorbing the noise. Although good results can be obtained using these

early approaches, many theoretical and practical issues such as network stability and storage

capacity were still unresolved. In 1988, Kosko [1] presented the theory of bidirectional associative

memory by generalizing the Hopfield network model.

As a class of artificial neural networks, Bidirectional Associative Memories (BAM) provide

massive parallelism, high error correction and high fault tolerance ability. However, to form a

good BAM, a good encoding strategy was required. This field has received extensive attention

from researchers and a substantial effort has been devoted to various learning rules. Kosko [1]

has provided a correlation learning strategy and proved that the BAM process will converge after

a finite number of interactions. However, the correlation matrix used by Kosko cannot guarantee

that the energy of any training pair is a local minimum. That is, it can not guarantee recall of

any training pair even for a very small set of training data.

During the following years, various encoding strategies and learning rules were proposed to

improve the capacity and the performance of BAM. In 1990, Wang, Cruz, and Mulligan [2]

introduced two BAM encoding schemes to increase the recall performance with a trade off of

more neurons. These are multiple training methods, which guarantee the recall of all training pairs

[3]. In 1993 and 1994, Leung [9] [10] present the Enhanced Householder Encoding Algorithm

(EHCA), which was improved by Lenze [11] in 2001, to enlarge the capacity. In 1995, Wang

and Don [12] introduced the exponential bidirectional associative memory (eBAM), which uses

an exponential encoding rule rather than the correlation scheme.

However, these methods have focused on the training set or capacity only. The noisy neighbor

pairs and the noise tolerance set of BAM have been ignored. In this paper, we are especially

interested in the approach proposed by Wang, Cruz, and Mulligan [2] [3] and extend the BAM

by choosing the weights for training pairs in the BAM correlation matrix, which can maximize

the noise tolerance set, for a given set of training pairs, such that any noisy input pair within

the tolerance set will converge to the correct training pair.

June 1, 2003
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Some basic concepts of BAM are reviewed in Section II. Then, the multiple training concept

is extended in Section III with the optimization-based encoding strategy for constructing the

correlation matrix. Two lemmas and a theorem about the new encoding rule are proved in the

same section. These provide the foundation for constructing the maximum noise tolerance set. We

present a numerical example in Section IV to illustrate the effectiveness of the extended BAM.

In this example, a standard GA is used to resolve the nonlinear optimal problem and obtain the

optimum training weights. Finally, we draw conclusions and enumerate some possible future

extensions in Section V.

II. B IDIRECTIONAL ASSOCIATIVE MEMORY

BAM is a two-layer hetero-associative feedback neural network model first introduced by

Kosko [1]. As shown in Fig. 1, the input layerLA includesn binary valued neurons(a1, a2, . . . , an)

and the output layerLB comprisesm binary valued components(b1, b2, . . . , bm). Now we have

LA = {0.1}n and LB = {0, 1}m. BAM can be denoted as a bi-directional mapping in vector

spaceM : Rn ↔ Rm. The training pairs can be stored in the correlation matrix as follows:

Fig. 1. Structure of Bidirectional Associative Memory

M =
N∑

i=1

X>
i Yi

June 1, 2003
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whereXi andYi are the bipolar mode ofAi andBi respectively, i.e.




Xi = 2Ai −~1

Yi = 2Bi −~1

If inputs X1, X2, . . . , XN are orthogonal to each other, i.e.

XiX
>
j =





1 , i = j

0 , i 6= j

then,

XiM = Xi

( N∑

j=1

X>
j Yj

)
= XiX

>
i Yi +

N∑

j=1,j 6=i

XiX
>
j Yj = Yi

To obtain higher accuracy for associative memory and retrieve one of the nearest training

inputs, the outputY can be fed back to BAM. Starting with a pair(α0, β0), determine a sequence

(α1, β1), (α2, β2), · · · , until it finally converges to an equilibrium point(αF , βF ). If BAM

converges for every training pair, M is said to be bidirectional stable.

The sequence can be obtained as follows:

[βi+1]k =





1 , [αiM ]k > εk

[βi]k , [αiM ]k = εk

−1 , [αiM ]k < εk

[αi+1]k =





1 , [βiM ]k > δk

[αi]k , [βiM ]k = δk

−1 , [βiM ]k < δk

where [•]kis the kth element of the vector.εk and δk and are two thresholds for thekth

element ofαi and βi respectively. If(ε, δ)> = (ε1, ε2, . . . , εN , δ1, δ2, . . . , δN)> = ~0, then this

kind of BAM is called homogeneous. Others are called non-homogeneous BAM.

For each pair , the Lyapunov or energy function is defined as,

E =




−αMβ> , (ε, δ)> = ~0

−αMβ> + αε> + βδ> , (ε, δ)> 6= ~0

Kosko [1] and Haineset al. [4] have proved that after a finite number of iterations,E converges

to a local minimum, where the corresponding pair(αF , βF ) is a stable point.

McElieceet al. [5] have shown that if the training pairs are even coded (±1 with probability

0.5) andn-dimensional, the storage capacity of the homogeneous BAM isn
2 logn

2
. That means, if

L even-coded stable states are chosen uniformly at random, the maximum value ofL in order

that most of theL original vectors are accurately recalled isn
2 logn

2
.

June 1, 2003
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For the non-homogeneous BAM, Haines and Hecht-Nielsen [4] have pointed out that the

possible number of the stable states is between 1 and2min(m,n). However, since these stable

states are chosen in a rigid geometrical procedure, the storage capacity of the non-homogeneous

BAM is less than the maximum number. Haines and Hecht-Nielsen [4] also have shown that for

N same dimensional and uniformly randomly chosen training pairs with(4+logn
2 ) exactly entries

equal to+1 and (n− 4− logn
2 ) entries equal to−1, if N < 0.68n2

[logn
2 +4]2

, then a non-homogeneous

BAM can be constructed so that approximately98% of these chosen pairs can be stable states.

III. E NCODING STRATEGY FORBAM WITH MAXIMUM NOISE TOLERANCE SET

In this new enhanced model, we start with a weighted learning rule of BAM similar to the

Multiple Training Strategy in [3]. For a given set of training pairs{(Xi, Yi)}N
i=1, the weighted

correlation matrix is

M =
N∑

i=1

wiX
>
i Yi (1)

where,

Xi = (xi1, xi2, · · · , xiQ)

Yi = (yi1, yi2, · · · , yiP )

Q andP are the lengths of the input and output patterns respectively.W = (w1, w2, · · · , wN) is

the vector of training weights. In [3], necessary and sufficient conditions are derived for choosing

W such that each training pair can be recalled correctly.

The energy of a training pair(Xi, Yi) is defined as

E(Xi, Yi,M) = −XiMY >
i (2)

If the energy of one training pair is lower than all its neighbors with one Hamming distance

away from it, then the training pair can be recalled correctly.

The neighbor pairs withn ∈ I Hamming distance away from a pair(Xi, Yi)is defined as

Ω(Xi, Yi, n) =




{(X,Y )|Hx(Xi, X) + Hy(Yi, Y ) = n} , n > 0

(Xi, Yi) , n ≤ 0

where Hx(Xi, X)is the Hamming distance between layersXi and X, and Hy(yi, y) is the

Hamming distance between layersYi andY .

June 1, 2003
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Lemma 1: If a training weight vectorW = [w1, w2, · · · , wn]> satisfies

[Γ1, Γ2, · · · , ΓN ]>W ≥ 0 (3)

where,

Γi =




ηA1
i1 · · · ηA1

iN

...
...

ηAQ
i1 · · · ηAQ

iN

ηB1
i1 · · · ηB1

iN

...
...

ηBP
i1 · · · ηBP

iN




ηAk
ij = AiX

>
j YjB

>
i − Ak

i X
>
j YjB

>
i

ηBk
ij = AiX

>
j YjB

>
i − AiX

>
j Yj(B

k
i )>

Ak
i (B

k
i ) differs form Ai(Bi) only in the k-th bit

Then,∃Ψ ∈ I+, such that any pair(X, Y ) ∈ N⋃
i=1

Ω(Xi, Yi, n), 1 ≤ n ≤ Ψ has higher energy than

any pair(X ′, Y ′) ∈ Ω(X,Y, 1)
⋂ [

N⋃
i=1

Ω(Xi, Yi, n− 1)
]
.

Proof: Wang, Cruz, and Mulligan [2] have proved that if a training weight vectorW satisfies

condition (3), then all training pairs can be recalled correctly. Since a training pairPi can be

recalled correctly if and only ifPi is a local minimum on the energy surface, any pair(X, Y ) ∈
N⋃

i=1
Ω(Xi, Yi, 1) has higher energy than any pair(X ′, Y ′) ∈ Ω(X,Y, 1)

⋂ [
N⋃

i=1
Ω(Xi, Yi, 0)

]
. So,

at least∃Ψ = 1 satisfying that any pair(X, Y ) ∈ N⋃
i=1

Ω(Xi, Yi, n),1 ≤ n ≤ Ψ has higher energy

than any pair(X ′, Y ′) ∈ Ω(X, Y, 1)
⋂ [

N⋃
i=1

Ω(Xi, Yi, n− 1)
]
.

Definition 1: For a BAM(W,M) satisfying condition (3), we define the maximumΨ as the

energy well hyper-radiusF which satisfies the following:

1) F ∈ I+

2) any pair(X, Y ) ∈ N⋃
i=1

Ω(Xi, Yi, n), n ∈ I and1 ≤ n ≤ F has higher energy than any pair

(X ′, Y ′) ∈ Ω(X, Y, 1)
⋂ [

N⋃
i=1

Ω(Xi, Yi, n− 1)
]
;

3) at least one pair(X, Y ) ∈ N⋃
i=1

Ω(Xi, Yi, F + 1) has energy lower than or equal to that of at

least one pair(X ′, Y ′) ∈ Ω(X, Y, 1)
⋂ [

N⋃
i=1

Ω(Xi, Yi, F )
]
.

Lemma 2: Given a desired training pair set{(Xi, Yi)}N
i=1, a weight vectorW satisfying

condition (3), for the associated energy well hyper-radiusF , if we define Vi(F − 1, M) =

June 1, 2003
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{(X, Y )|Hx(X, Xi) + Hy(Y, Yi) ≤ F − 1} for eachi, 1 ≤ i ≤ N , then,

1) any input pair in the setVi(F − 1,M) converges to the training pair(Xi, Yi);

2) for any i and j such that1 ≤ i 6= j ≤ N , we haveVi(F − 1,M)
⋂

Vj(F − 1,M) = Ø;

3) an upper bound of the energy well hyper-radiusF (M) is

F̂ =

⌊
1

2
min

(
min

0≤i6=j≤N
Hx(Xi, X), min

0≤i 6=j≤N
Hy(Yi, Y )

)
+ 1

⌋

Proof: From Lemma 1andDefinition 1, sinceW satisfying (3), its associated energy well

hyper-radiusF ≥ 1.

1) Kosko [1] has pointed out that when a pair is input to a BAM, the network quickly evolves

to a system energy local minimum. For any input pair inVi(F − 1,M), there is a high energy

”hill” around it. So it is guaranteed that BAM evolves to some pair(X, Y ) ∈ Vi(F − 1,M).

Since(Xi, Yi) is the only system energy local minimum, any input pair in the setVi(F − 1,M)

converges to the training pair(Xi, Yi).

2) For any1 ≤ i 6= j ≤ N , if Vi(F − 1,M)
⋂

Vj(F − 1,M) 6= Ø, then there is at least one pair

(X,Y ) ∈ Vi(F − 1,M)
⋂

Vj(F − 1,M). From conclusion 1) which we have just proved,(X, Y )

converges to the training pair(Xi, Yi) and (Xj, Yj). It implies that(Xi, Yi) ≡ (Xj, Yj) which

is inconsistent with the condition thati 6= j. So, for anyi and j such that1 ≤ i 6= j ≤ N ,

Vi(F − 1, M)
⋂

Vj(F − 1,M) = Ø.

3) From the conclusion 2) that for anyi and anyj, 1 ≤ i 6= j ≤ N , we haveVi(F −
1,M)

⋂
Vj(F − 1,M) = Ø, then we obtainF − 1 ≤ 1

2
min(Hx(Xi, X), Hy(Yi, Y )) , so an

upper bound for the energy well hyper-radius is

F̂ =

⌊
1

2
min

(
min

0≤i6=j≤N
Hx(Xi, X), min

0≤i 6=j≤N
Hy(Yi, Y )

)
+ 1

⌋

Definition 2: For a given training pair set{(Xi, Yi)}N
i=1 with a weight vectorW and the

associated energy well hyper-radiusF ≥ 1, we defineV (M) =
N⋃

i=1
Vi(F − 1,M) as thenoise

tolerance setof BAM(W,M).

Any pair in V (M) input to BAM(W,M) converges to the correct training pair.

We want to find the optimal training weight vectorW ∗ which can generate a correlation

matrix M∗ with the maximum energy well hyper-radiusF ∗ and the optimum noise tolerance

June 1, 2003
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set V ∗(M∗) ⊇ any V (M). In [3], Wang et al. just considered neighbors with one Hamming

distance, corresponding toF = 1, andV (M) = {(Xi, Yi)}N
i=1. Their method does not provide

any information for determining a noise tolerance setV (M) ⊃ {(Xi, Yi)}N
i=1.

For each training pair(Xi, Yi) in a training set{(Xi, Yi)}N
i=1 andM formed from the training

set by equation (1), we define the energy of any neighbor

Em,p
i (k1, k2, · · · , km; t1, t2, · · · , tp; M) = −[Xm

i (k1, k2, · · · , km)]M [Y p
i (t1, t2, · · · , tp)]> (4)

where,
(
Xm

i (k1, k2, · · · , km), Y p
i (t1, t2, · · · , tp)

)
∈ Ω(Xi, Yi, m + p).

(k1, k2, · · · , km) are the position indices that them bits with the complementary values (in bipolar

mode, the complementary value of -1(+1) is +1(-1); in binary mode, the complementary value

of 1(0) is 0 (1)) for the input patternXi

1 ≤ ki ≤ Q and ki 6= kj if 1 ≤ i 6= j ≤ m (5)

while (t1, t2, · · · , tp) has a similar meaning for the output patternYi

1 ≤ ti ≤ P and ti 6= tj if 1 ≤ i 6= j ≤ p (6)

Also define 



X0
i = Xi

Y 0
i = Yi

E0,0
i = E(Xi, Yi,M)

φ(x) =





1 , x > 0

0 , x ≤ 0
(7)

Then, for a fixed weight vectorW = (w1, w2, · · · , wN), the object function is defined as

f(W ) =
N∑

i=1

Ēi(M) (8)

whereĒi(M) is a weighted sum of energy difference between any pair(X,Y ) ∈ N⋃
i=1

Ω(Xi, Yi, n),

1 ≤ n ≤ F̂ and any pair(X ′, Y ′) ∈ Ω(X, Y, 1)
⋂ [

N⋃
i=1

Ω(Xi, Yi, n− 1)
]
.

Ēi(M) =
F̂∑

m=0

F̂−m∑

p=max(0,1−m)

γm,p

∑

(5)

∑

(6)

Ēm,p
i (k1, k2, · · · , km; t1, t2, · · · , tp; M) (9)

where,
∑
(5)

∑
(6)

means all combinations ofk1, k2, · · · , km and t1, t2, · · · , tp which satisfying condition (5)
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and (6) respectively.

if m ≥ 2 andp ≥ 2 then,

Ēm,p
i (k1, k2, · · · , km; t1, t2, · · · , tp; M) =

∏

(k′1,k′2,···,k′m−1)⊂(k1,k2,···,km)

φ




Em,p
i (k1, k2, · · · , km; t1, t2, · · · , tp; M)−

Em−1,p
i (k′1, k

′
2, · · · , k′m−1; t1, t2, · · · , tp; M)


 ×

∏

(t′1,t′2,···,t′p−1)⊂(t1,t2,···,tp)

φ




Em,p
i (k1, k2, · · · , km; t1, t2, · · · , tp; M)−

Em,p−1
i (k1, k2, · · · , km; t′1, t

′
2, · · · , t′p−1; M)


 (10)

if if m = 1 andp = 1, then,

Ē1,1
i (k1; t1; M) = φ

(
E1,1

i (k1; t1; M) + XiM [Y 1
i (t1)]

>)
φ

(
E1,1

i (k1; t1; M) + X1
i (k1)MY >

i

)

if if m = 0 andp = 1, then,

Ē0,1
i (t1; M) = φ

(
−XiM [Y 1

i (t1)]
> − E0,0

i

)

if if m = 1 andp = 0, then,

Ē1,0
i (k1; M) = φ

(
−X1

i (k1)MY >
i − E0,0

i

)

and

γm,p(x) =





1 , x > 0

−Hm+p , x ≤ 0
(11)

The seriesHl can be generated by the following formula,




HF̂+1 = −1

HF̂ = 1

Hl−1 = N
F̂∑

i=l
(Hi + 1)

(
P+Q

i

)
, l = F̂ , F̂ − 1, · · · , 2

(12)

where

(
n

m

)
=

m!

m!(n−m)!
for any n ≥ m ≥ 0, n ∈ I, m ∈ I

It is obvious that seriesHl is strictly decreasing.
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Maximum Noise Tolerance Theorem: Given a set of training pairs{(Xi, Yi)}N
i=1 and at least

oneW satisfying the condition ofLemma 1, and if W ∗ denotes theW that maximizesf(W ),

wheref is given in (4) - (12),

W ∗ = arg max
W

f(W ) (13)

then,

1) The BAM(W ∗,M∗) has the maximum energy well hyper-radius1 ≤ F ∗ = r ≤ F̂ , wherer

uniquely satisfies,

N
r∑

i=1

(
Q + p

i

)
−N

F̂∑

j=r+1

Hj

(
Q + P

j

)
≤ f(W ∗) ≤ N

F̂∑

i=1

(
Q + P

i

)
− 1−Hr+1 (14)

2) V ∗(M∗) =
N⋃

i=1
Vi(F

∗ − 1,M∗) ⊇ any V (M), i.e. for anyF ′ > F ∗, there is at least one pair

(X ′, Y ′) ∈ N⋃
i=1

Vi(F
′ − 1,M) such that if it is input to BAM, the output layer will not converge

to the correct training pair.

Proof: We divide the proof into three parts. The first one is to show thatr uniquely satisfies

inequality (14). The second is to prove thatF ∗ = r is the maximum energy well hyper-radius.

The last one is to show thatV ∗(M∗) =
N⋃

i=1
Vi(F

∗ − 1,M∗) ⊇ any V (M).

Firstly, given a training weight vectorW and energy well hyper-radiusF , f(W ) depends

on the training pair set{(Xi, Yi)}N
i=1. Since for any pair(X,Y ) ∈ N⋃

i=1
Ω(Xi, Yi, n), n ≥ 1 we

put a penalty value−Hn on the object function if(X,Y ) has energy lower than or equal to

that of any neighbor pair(X ′, Y ′) ∈ Ω(X, Y, 1)
⋂ [ N⋃

i=1
Ω(Xi, Yi, n − 1)

]
and is Hl a strictly

decreasing series, the object functionf(W ) takes the largest value when only one neigh-

bor pair (X, Y ) ∈ N⋃
i=1

Ω(Xi, Yi, F + 1) has energy lower than or equal to that of one pair

(X ′, Y ′) ∈ Ω(X, Y, 1)
⋂ [ N⋃

i=1
Ω(Xi, Yi, F )

]
. On the other hand, when any neighbor pair(X, Y ) ∈

N⋃
i=1

Ω(Xi, Yi, n), n ≥ F + 1 has energy lower than or equal to that of any pair(X ′, Y ′) ∈

Ω(X, Y, 1)
⋂ [ N⋃

i=1
Ω(Xi, Yi, n)

]
, f(W )takes the lowest value. So, inequality (14) holds.

It can be shown by contradiction that only one uniquer satisfies the inequality (14).

If there isr′, 1 ≤ r′ 6= r ≤ F̂ that satisfies inequality (14),

N
r′∑

i=1

(
Q + P

i

)
−N

F̂∑

j=r′+1

Hj

(
Q + P

j

)
≤ f(W ∗) ≤ N

F̂∑

i=1

(
Q + P

i

)
− 1−Hr′+1 (15)
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then,1 ≤ r′ 6= r ≤ F̂ ⇒ F̂ ≥ r′ ≥ r + 1 or r′ + 1 ≤ r ≤ F̂ .

if F̂ ≥ r′ ≥ r + 1, from the right part of (14),

f(W ∗) = N
F̂∑

i=1

(
Q + P

i

)
− 1−Hr+1 ≤ N

F̂∑

i=1

(
Q + P

i

)
− 1−Hr′

= N
F̂∑

i=1

(
Q + P

i

)
− 1−N

F̂∑

j=r′+1

(Hj + 1)

(
Q + P

j

)

= N
r′∑

i=1

(
Q + P

i

)
− 1−N

F̂∑

j=r′+1

Hj

(
Q + P

j

)

< N
r′∑

i=1

(
Q + P

i

)
−N

F̂∑

j=r′+1

Hj

(
Q + P

j

)
≤ f(W ∗)

This is inconsistent with the fact thatf(W∗) ≡ f(W ∗).

if r′ + 1 ≤ r ≤ F̂ , the right part of (15)

f(W ∗) = N
F̂∑

i=1

(
Q + P

i

)
− 1−Hr′+1 ≤ N

F̂∑

i=1

(
Q + P

i

)
− 1−Hr

= N
F̂∑

i=1

(
Q + P

i

)
− 1−N

F̂∑

j=r+1

(Hj + 1)

(
Q + P

j

)

= N
r∑

i=1

(
Q + P

i

)
− 1−N

F̂∑

j=r+1

Hj

(
Q + P

j

)

< N
r∑

i=1

(
Q + P

i

)
−N

F̂∑

j=r+1

Hj

(
Q + P

j

)
≤ f(W ∗)

This is inconsistent with the fact thatf(W∗) ≡ f(W ∗).

Hence, inequality (14) is satisfied by a uniquer.

Secondly, ifF ∗ = r = F̂ , thenF ∗ is the maximum energy well hyper-radius. IfF ∗ = r < F̂ ,

then the conclusion thatF ∗ = r is the maximum energy well hyper-radius can be proved by

contradiction as follows.

If there is a(W ∗∗,M∗∗) pair, with the energy well hyper-radiusF ∗∗ = e ,1 ≤ r < e ≤ F̂ , then,

f(W ∗) ≤ N
F̂∑

i=1

(
Q + P

i

)
− 1−Hr+1

≤ N
F̂∑

i=1

(
Q + P

i

)
− 1−He
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= N
e∑

i=1

(
Q + P

i

)
−He + N

F̂∑

j=e+1

(
Q + P

j

)
− 1

while

f(W ∗∗) ≥ N
e∑

i=1

(
Q + P

i

)
−N

F̂∑

j=e+1

Hj

(
Q + P

j

)

so,

f(W ∗)− f(W ∗∗) ≤ N
e∑

i=1

(
Q + P

i

)
−He + N

F̂∑

j=e+1

(
Q + P

j

)
− 1

−
[
N

e∑

i=1

(
Q + P

i

)
−N

F̂∑

j=e+1

Hj

(
Q + P

j

)]

= N
F̂∑

j=e+1

(Hj + 1)

(
Q + P

j

)
−He − 1

= −1 < 0

Then we obtainf(W ∗∗) > f(W ∗) which is inconsistent with equation (13) that definesW ∗ as

the optimal solution. SoF ∗ is the maximum energy well hyper-radius.

Thirdly, sinceF ∗ is the maximum energy well hyper-radius, for anyF ′ > F ∗, there is at

least one neighbor pair(X,Y ) ∈ N⋃
i=1

Ω(Xi, Yi, n), F ∗ + 1 ≤ n ≤ F ′ which has energy lower

than or equal to that of one pair(X ′, Y ′) ∈ Ω(X,Y, 1)
⋂ [ N⋃

i=1
Ω(Xi, Yi, n − 1)

]
. Then if this

neighbor pairX ′, Y ′ is input to BAM, the output pair will not be the correct training pair. Since
N⋃

i=1
Vi(F

′−1,M) =
N⋃

i=1
[
F ′−1⋃
j=0

Ω(Xi, Yi, j)] and(X ′, Y ′) ∈ Ω(X,Y, 1)
⋂ [ N⋃

i=1
Ω(Xi, Yi, n−1)

]
,F ∗+

1 ≤ n ≤ F ′, we can obtain that(X ′, Y ′) ∈ N⋃
i=1

Vi(F
′− 1, M). So, there is at least one input pair

(X ′, Y ′) ∈ N⋃
i=1

Vi(F
′− 1,M) , such that if it is input to BAM, the network does not converge to

the correct training pair. Hence, the optimum tolerance set isV ∗(M∗) =
N⋃

i=1
Vi(F

∗ − 1,M∗).

Remarks: The optimum noise tolerance setV ∗(M∗) =
N⋃

i=1
Vi(F

∗ − 1,M∗) will be called the

maximum noise tolerance set. It is for a fixed training pair set. It is possible to find some method,

such as the dummy augmentation in [2] to change the set of training pairs to one with increased

separation between the training pairs but with the same information content. Intuitively, this can
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increase the probability of finding a larger maximum noise tolerance set due to an increased

energy well hyper-radius upper bound.

There are three types of neighbors for BAM: 1) the ones∈ V ∗(M∗) , whose output pairs

converge to the correct training pairs; 2) the ones, whose deviations are beyond the upper

bound F̂ =

⌊
1
2
min

(
min

0≤i6=j≤N
Hx(Xi, X), min

0≤i6=j≤N
Hy(Yi, Y )

)
+ 1

⌋
, whose output pairs will

not converge to correct training pairs; 3) others that may or may not be recalled correctly.

Since our approach is based on the energy surface, using different energy definitions, it can

be applied to obtain max noise tolerance sets for the higher capacity BAM [9]-[12] rather than

the basic BAM only.

IV. COMPUTERSIMULATIONS

A numerical example is given in this section to evaluate the performance of the extended BAM

with optimized training weights. Suppose one wants to distinguish three pattern pairs shown in

Fig. 2. X1 = (-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1)

Fig. 2. Three Training Pairs

Y1 = (-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)
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X2 = (1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,1,1)

Y2 = (-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1)

X3 = (1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1)

Y3 = (1,1,1,1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,1,1,1)

So,

Hx(X1, X2) = 12, Hy(Y1, Y2) = 8

Hx(X1, X3) = 8, Hy(Y1, Y3) = 16

Hx(X2, X3) = 8, Hy(Y2, Y3) = 8

F̂ = 8/2 + 1 = 5

In this example, to find the optimum training weights, the objective function defined in equation

(8) is used as the fitness function of Genetic Algorithm (GA). The results obtained from GA

are optimal with high probability. This is acceptable in real applications.

Fig. 3. Fitness Plot and Training Weights

W ∗ = (w∗
1, w

∗
2, w

∗
3) = (14, 14, 15), andF ∗ = 2. All training pairs have been recalled correctly

and all noisy input pairs with one Hamming distance away from the training pairs have converged

to the correct training pair.

V. CONCLUSION

We extended the Basic BAM, using an optimization-based training strategy. For a given set of

training pairs, we determined the weights for the training pairs in the BAM correlation matrix
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that result in the maximum noise tolerance set. Any noisy input pair within the tolerance set

will converge to the correct training pair. We proved that for a given set of training pairs, the

maximum noise tolerance set is the largest in the sense that at least one pair, with Hamming

distance one larger than the hyper radius associated with the optimum noise tolerance set, will not

converge to the correct training pair. A standard Genetic Algorithm (GA) was used to calculate

the weights to maximize the object function.

For BAM applications, the speed of encoding is relatively less important than that of the

decoding because the encoding can be calculated offline. However, if adaptive encoding is needed

to apply to some new desired pairs in real time simulation, the training time should be as short as

possible. In the example of this paper, a standard GA algorithm was used. This GA worked well

but performed relatively inefficiently, as calculation times were quite long with many generations

and fitness values needed to find the optimal solution. Improving the performance of the BAM

weight optimization is another future research direction.
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